Direct numerical simulations of intrusive density- and particle-driven gravity currents

Author:

Francisco E. P.1ORCID,Espath L. F. R.2ORCID,Laizet S.3ORCID,Silvestrini J. H.4ORCID,Calo V. M.5ORCID

Affiliation:

1. School of Engineering 1 , Ftec, Porto Alegre-RS, Brazil

2. School of Mathematical Sciences, University of Nottingham 2 , Nottingham NG7 2RD, United Kingdom

3. Turbulence, Mixing and Flow Control Group, Department of Aeronautics, Imperial College London 3 , London SW7 2AZ, United Kingdom

4. School of Engineering, Pontifical Catholic University of Rio Grande do Sul 4 , Av. Ipiranga 6681, 90619-900 Porto Alegre-RS, Brazil

5. School of Electrical Engineering, Computing and Mathematical Sciences, Curtin University 5 , P.O. Box U1987, Perth, Western Australia 6845, Australia

Abstract

In the present study, mesopycnal flows are investigated using direct numerical simulations. In particular, intrusive density- and particle-driven gravity currents in the lock exchange setup are simulated with the high-order finite-difference framework Xcompact3d. To account for the settling velocity of particles, a customized Fick's law for the particle-solution species is used with an additional term incorporating a constant settling velocity proportional to the concentration of particles. A general energy budget equation is presented, for which the energy can migrate across the domain's boundaries. The relevant main features of intrusive gravity currents, such as front velocity, energy exchanges, sedimentation rate, deposit profile, and deposit map are discussed with the comparison between two- and three-dimensional simulations. In particular, the influence of the Grashof number, the interface thickness, the energy exchanges, the sedimentation process, and how the presence of more than one particle fraction may change the flow dynamics are investigated. The results are in good agreement with previous experiments and theoretical work, in particular for the prediction of the front velocity. For the particle-driven case, the suspended mass evolution along with the sedimentation rate suggests the occurrence of three different stages. In the first stage after the lock release, the particle mixture tends to suspend itself due to gravitational forces. Once most of the particle-mixture mass is suspended, the current intrudes while increasing its velocity, reaching its kinetic energy peak. In the last stage, the particles are deposited at a nearly constant sedimentation rate. As a result, the front velocity constantly decelerates.

Funder

HORIZON EUROPE Marie Sklodowska-Curie Actions

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3