Secondary instabilities in the wake of an elongated two-dimensional body with a blunt trailing edge

Author:

Gibeau B.,Koch C. R.,Ghaemi S.ORCID

Abstract

The secondary instability in the wake of a two-dimensional blunt body with a chord to thickness ratio of 46.5 was experimentally investigated for Reynolds numbers of 3500, 5200 and 7000 based on the blunt trailing edge height $h$. Planar, stereoscopic and high-speed particle image velocimetry (PIV) measurements were performed to characterise the wake and upstream boundary layer. The same mode B secondary instability that is found in the cylinder wake was found to be present in the wake of the elongated body studied here. The most probable wavelength of the secondary instability, defined as the spanwise distance between adjacent streamwise vortex pairs in the wake, was found to range from $0.7h$ to $0.8h$ by applying a spatial autocorrelation to the spanwise–wall-normal instantaneous fields of the $Q$-criterion. The temporal evolution of the secondary wake vortices was investigated using time-resolved stereoscopic PIV measurements and it was shown that the vortices maintain both their directions of rotation and spanwise positions during the primary vortex shedding cycles. In agreement with previous literature, the secondary instability did not greatly change as the upstream boundary layer transitioned from laminar to turbulent. Moreover, any upstream boundary layer structures were found to rapidly evolve into wake structures just past the blunt trailing edge. The wavelength of the secondary instability was shown to match the spanwise distance between adjacent low-speed zones of streamwise velocity in the wake. These undulating velocity patterns proved to be a viable method for determining the secondary instability wavelength; however, this type of analysis is highly sensitive to the energy content used for data reconstruction when proper orthogonal decomposition is applied beforehand.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3