Enhancing numerical accuracy in the prediction of rotor wake vortex structures

Author:

Bodling Andrew1ORCID,Schwarz Clemens2,Wolf C. Christian2ORCID,Gardner Anthony D.2ORCID

Affiliation:

1. Science and Technology Corporation 1 , Moffett Field, California, USA

2. German Aerospace Center (DLR) 2 , Göttingen, Germany

Abstract

In modern high-fidelity computational fluid dynamic simulations, the primary vortex system in hover often breaks down into secondary vortices. The sources of numerical error influencing the prediction of the vortex system were studied by performing high-fidelity simulations of the wake of a two-bladed rotor and comparing the predictions to stereoscopic particle image velocimetry measurements in different measurement planes. Various numerical inputs, including sub-iteration convergence, blade pitch offset, and grid resolution, were varied to resolve discrepancies between the measured and predicted vortex characteristics from a previous study done by the authors. A parametric study on near- and off-body solver sub-iteration convergence demonstrated that although the secondary vortex characteristics converged as the sub-iteration convergence of both solvers increased, a large discrepancy in the number of secondary vortices remained. This discrepancy was investigated by varying the thrust, where it was found that the breakdown of the primary vortex is directly linked to the number of secondary vortices. Dissimilarities in the blade pitch angle, which could not be avoided in the experiment, were modeled by intentionally using an offset in the blade pitch angle of the two blades. It was shown that as blade pitch angle offset increases, vortex pairing becomes more distinct. When vortex pairing occurred in both the experiment and simulation, the decay of secondary vortices in the experiment and simulation agreed best. To better match the experimental resolution, grid resolution was increased and comparing the two simulations, the finer mesh simulation agreed best with the measured primary and secondary vortex characteristics.

Funder

U.S. Department of Defense HPC Modernization Program Office

U.S. Army

Publisher

AIP Publishing

Reference37 articles.

1. High resolution Navier-Stokes simulation of rotor wakes,2011

2. AIAA standardized hover simulation: Hover performance prediction status and outstanding issues,2017

3. A comparison of CFD hover predictions for the Sikorsky s-76 rotor,2016

4. Wake breakdown of high-fidelity simulations of a rotor in hover,2019

5. An overview of wake breakdown in high-fidelity simulations of rotor-in-hover,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3