Wind turbine wakes over hills

Author:

Shamsoddin Sina,Porté-Agel FernandoORCID

Abstract

Understanding and predicting the behaviour of wind turbine wake flows over hills is important for optimal design of wind-farm configurations on topography. In this study, we present an analytical modelling framework together with large-eddy simulation (LES) results to investigate turbine wakes over two-dimensional hills. The analytical model consists of two steps. In the first step, we deal with the effect of the pressure gradient on the wake evolution; and in the second step, we consider the effect of the hill-induced streamline distortion on the wake. This model enables us to obtain the wake recovery rate, the mean velocity and velocity deficit profiles and the wake trajectory in the presence of the hill. Moreover, we perform LES to test our model and also to obtain new complementary insight about such flows. Especially, we take advantage of the LES data to perform a special analysis of the behaviour of the wake on the leeward side of the hill. It is found that the mainly favourable pressure gradient on the windward side of the hill accelerates the wake recovery and the adverse pressure gradient on the leeward side decelerates it. The wake trajectory for a hill of the same height as the turbine’s hub height is found to closely follow the hill profile on the windward side, but it maintains an almost constant elevation (a horizontal line) downstream of the hilltop. The trajectory of the wake on the leeward side is also studied for a limiting case of an escarpment, and it is shown that an internal boundary layer forms on the plateau which leads to an upward displacement of the wake centre. Finally, a parametric study of the position of the turbine with respect to the hill is performed to further elucidate the effect of the hill-induced pressure gradient on the wind turbine wake recovery.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3