Is the free wind speed sufficient to determine aerodynamic turbine performance in complex terrain?

Author:

Zengler C P,Troldborg N,Gaunaa M

Abstract

Abstract The performance of a wind turbine is usually characterized by its power curve, which relates the wind speed at hub height with its energy production. This relation does not take streamwise inhomogeneities of the inflow – as they might be present in complex terrain – into account. In this work, the consequences of this simplification for performance predictions are analyzed. Simulations using Reynolds-averaged Navier Stokes equations (RANS) with the k-ϵ-fp model as closure are performed. An actuator disc (AD) on the ridge of a quasi two-dimensional Gaussian hill subject to a neutral atmospheric inflow is investigated. Roughness length, hill width and thrust coefficient are varied and the respective induction evaluated. Results indicate that the induction at a given thrust coefficient depends on the terrain configuration; it can be higher or lower than predictions by momentum theory, translating to a decrease or increase in the power coefficient. In this work, a power decrease by up to 15.3 % compared to flat terrain is observed. The maximum power increase is approximately 1.6 %. It is concluded that hub height wind speed or rotor equivalent wind speed are no sufficient measures to universally characterize aerodynamic turbine performance in complex terrain.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3