Abstract
In this paper, an analytical investigation of two-dimensional conventional Burnett equations has been undertaken for gaseous flow through a long microchannel. The analytical solution is obtained by using perturbation analysis around the classical Navier–Stokes solution with appropriate boundary conditions. The perturbation expansion is employed with the smallness parameter $\unicode[STIX]{x1D716}$, taken as the ratio of height to length of the microchannel. The solution for pressure is obtained by solving the cross-stream momentum equation while the velocity distribution is obtained from the streamwise momentum equation. The resulting ordinary differential equations in pressure and velocity are third-order and second-order, respectively. The required boundary conditions for pressure are obtained from direct simulation Monte Carlo (DSMC) data. The obtained analytical solution matches the available DSMC solution well. This is perhaps the first analytical solution of the Burnett equations using the perturbation approach.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献