Abstract
This experimental study examines ventilated supercavity formation in a free-surface bounded environment where a body is in motion and the fluid is at rest. For a given torpedo-shaped body and water depth ($H$), depending on the cavitator diameter ($d_{c}$) and the submergence depth ($h_{s}$), four different cases are investigated according to the blockage ratio ($B=d_{c}/d_{h}$, where $d_{h}$ is the hydraulic diameter) and the dimensionless submergence depth ($h^{\ast }=h_{s}/H$). Cases 1–4 are, respectively, no cavitator in fully submerged ($B=0$, $h^{\ast }=0.5$), small blockage in fully submerged ($B=1.5\,\%$, $h^{\ast }=0.5$), small blockage in shallowly submerged ($B=1.5\,\%$, $h^{\ast }=0.17$) and large blockage in fully submerged ($B=3\,\%$, $h^{\ast }=0.5$) cases. In case 1, no supercavitation is observed and only a bubbly flow (B) and a foamy cavity (FC) are observed. In non-zero blockage cases 2–4, various non-bubbly and non-foamy steady states are observed according to the cavitator-diameter-based Froude number ($Fr$), air-entrainment coefficient ($C_{q}$) and the cavitation number ($\unicode[STIX]{x1D70E}_{c}$). The ranges of $Fr$, $C_{q}$ and $\unicode[STIX]{x1D70E}_{c}$ are $Fr=2.6{-}18.2$, $C_{q}=0{-}6$, $\unicode[STIX]{x1D70E}_{c}=0{-}1$ for cases 2 and 3, and $Fr=1.8{-}12.9$, $C_{q}=0{-}1.5$, $\unicode[STIX]{x1D70E}_{c}=0{-}1$ for case 4. In cases 2 and 3, a twin-vortex supercavity (TV), a reentrant-jet supercavity (RJ), a half-supercavity with foamy cavity downstream (HSF), B and FC are observed. Supercavities in case 3 are not top–bottom symmetric. In case 4, a half-supercavity with a ring-type vortex shedding downstream (HSV), double-layer supercavities (RJ inside and TV outside (RJTV), TV inside and TV outside (TVTV), RJ inside and RJ outside (RJRJ)), B, FC and TV are observed. The cavitation numbers ($\unicode[STIX]{x1D70E}_{c}$) are approximately 0.9 for the B, FC and HSF, 0.25 for the HSV, and 0.1 for the TV, RJ, RJTV, TVTV and RJRJ supercavities. In cases 2–4, for a given $Fr$, there exists a minimum cavitation number in the formation of a supercavity while the minimum cavitation number decreases as the $Fr$ increases. In cases 2 and 3, it is observed that a high $Fr$ favours an RJ and a low $Fr$ favours a TV. For the RJ supercavities in cases 2 and 3, the cavity width is always larger than the cavity height. In addition, the cavity length, height and width all increase (decrease) as the $\unicode[STIX]{x1D70E}_{c}$ decreases (increases). The cavity length in case 3 is smaller than that in case 2. In both cases 2 and 3, the cavity length depends little on the $Fr$. In case 2, the cavity height and width increase as the $Fr$ increases. In case 3, the cavity height and width show a weak dependence on the $Fr$. Compared to case 2, for the same $Fr$, $C_{q}$ and $\unicode[STIX]{x1D70E}_{c}$, case 4 admits a double-layer supercavity instead of a single-layer supercavity. Connected with this behavioural observation, the body-frontal-area-based drag coefficient for a moving torpedo-shaped body with a supercavity is measured to be approximately 0.11 while that for a cavitator-free moving body without a supercavity is approximately 0.4.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Reference35 articles.
1. Self, M. W. & Ripken, J. F. 1955 Steady-state cavity studies in a free-jet water tunnel. Rep. 47. St. Anthony Fall Hydraulic Laboratory, University of Minnesota, Twin Cities.
2. Song, C. S. 1961 Pulsation of ventilated cavities. Rep. 32B. St. Anthony Fall Hydraulic Laboratory, University of Minnesota, Twin Cities.
3. Skidmore, G. 2013 The pulsation of ventilated supercavities. Master of Science thesis, Department of Aerospace Engineering, Pennsylvania State University, University Park.