Singular jets during the collapse of drop-impact craters

Author:

Thoroddsen S. T.ORCID,Takehara K.,Nguyen H. D.,Etoh T. G.

Abstract

When a drop impacts on a deep pool at moderate velocity it forms a hemispheric crater which subsequently rebounds to the original free-surface level, often forming Worthington jets, which rise vertically out of the crater centre. Under certain impact conditions the crater collapse forms a dimple at its bottom, which pinches off a bubble and is also known to be associated with the formation of a very fast thin jet. Herein we use two ultra-high-speed video cameras to observe simultaneously the dimple collapse and the speed of the resulting jet. The fastest fine jets are observed at speeds of approximately $50~\text{m}~\text{s}^{-1}$ and emerge when the dimple forms a cylinder which retracts without pinching off a bubble. We also identify what appears to be micro-bubbles at the bottom of this cylinder, which we propose are caused by local cavitation from extensional stress in the flow entering the jet. The radial collapse of the dimple does not follow capillary-inertial power laws nor is its bottom driven by a curvature singularity, as has been proposed in some earlier studies. The fastest jets are produced by pure inertial focusing and emerge at finite dimple size, bypassing the pinch-off singularity. These jets emerge from the liquid contained originally in the drop. Finally, we measure directly the compression of the central bubble following the pinch-off and the subsequent large volume oscillation, which occurs at frequencies slightly above the audible range at approximately 23 kHz.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3