Droplet–jet collision following the monodispersedly dripping of coaxial binary droplets above a pool surface

Author:

Mulbah Christian1ORCID,Kang Can1ORCID,Song Huanfeng2,Yin Jin1

Affiliation:

1. School of Energy and Power Engineering, Jiangsu University 1 , Zhenjiang 212013, China

2. Shanghai Oriental Maritime Engineering Technology Co. Ltd 2 ., Shanghai 200011, China

Abstract

In the present study, the collision between a falling droplet and a rising Worthington jet was experimentally studied. The event is followed by the monodispersedly dripping of coaxial binary droplets into a quiescent pool of glycerol solution. Different concentrations of the solution are considered. Unique droplet–jet collision characteristics are observed when the dripping flow rate is manipulated to release binary droplets. When the first droplet impacts the pool, a significant disturbance is imposed onto the pool, forming a deep crater followed by a Worthington jet. The second droplet is timed to collide with the rising jet to create a unique mushroom-shaped droplet–jet collision. Two jet pinch-off modes (tip pinch-off and no pinch-off) and four distinct collision regimes (partial rebounding, end-pinching, elongated, and clotted central jet collision) are recognized. Liquid viscosity and jetting mode significantly influence the collision dynamics and splattering characteristics. To achieve partial rebounding collision at low Weber number, a high-impact coefficient incorporating characteristic dimensions of the droplets and the Worthington jet is required, whereas a low-impact coefficient is required at high Weber number to attain clotted jet collision. The overall end-pinching phenomenon occurs due to the interaction between liquid flow toward the jet tip and the retraction of the tip, which causes the jet neck diameter to decrease on a capillary timescale. As the impact parameter decreases, the Worthington jet is inhibited, and the mushroom-shaped collision splash spreading is suppressed.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3