Analysis of the flame–wall interaction in premixed turbulent combustion

Author:

Zhao Peipei,Wang LipoORCID,Chakraborty Nilanjan

Abstract

The present work focuses on the flame–wall interaction (FWI) based on direct numerical simulations (DNS) of a head-on premixed flame quenching configuration at the statistically stationary state. The effects of FWI on the turbulent flame temperature, wall heat flux, flame dynamics and flow structures were investigated. In turbulent head-on quenching, particularly for high turbulence intensity, the distorted flames generally consist of the head-on flame part and the entrained flame part. The flame properties are jointly influenced by turbulence, heat generation from chemical reactions and heat loss to the cold wall boundary. For the present FWI configuration, as the wall is approached, the ‘influence zone’ can be identified as the region within which the flame temperature, scalar gradient and flame dilatation start to decrease, whereas the wall heat flux tends to increase. As the distance to the wall drops below the flame-quenching distance, approximately where the wall heat flux reaches its maximum value, chemical reactions become negligibly weak inside the ‘quenching zone’. A simplified counter-flow model is also proposed. With the reasonably proposed relation between the flame speed and the flame temperature, the model solutions match well with the DNS results, both qualitatively and quantitatively. Moreover, near-wall statistics of some important flame properties, including the flame dilatation, reaction progress variable gradient, tangential strain rate and curvature were analysed in detail under different wall boundary conditions.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3