Numerical modelling of two-dimensional melt fracture instability in viscoelastic flow

Author:

Kwon YoungdonORCID

Abstract

Computationally modelling the two-dimensional (2-D) Poiseuille flow along and outside a straight channel with a differential viscoelastic constitutive equation, we demonstrate unstable dynamics involving bifurcations from steady flow to periodic melt fracture (sharkskin instability) and its further transition regime to a chaotic state. The numerical simulation first exposes transition from steady flow to a weak instability of periodic fluctuation, and in the middle of this periodic limit cycle (in the course of increasing flow intensity) a unique bifurcation into the second steady state is manifested. Then, a subcritical (Hopf) transition restoring this stable flow to stronger periodic instability follows, which results from the high stress along the streamlines of finite curvature with small vortices near the die lip. Its succeeding chaotic transition at higher levels of flow elasticity that induces gross melt fracture, seems to take a period doubling as well as quasiperiodic route. By simple geometrical modification of the die exit, we, as well, illustrate reduction or complete removal of sharkskin and melt fractures. The result as a matter of fact suggests convincing evidence of the possible cause of the sharkskin instability and it is thought that this fluid dynamic transition has to be taken into account for the complete description of melt fracture. The competition between nonlinear dynamic transition and other possible origins such as wall slip will ultimately determine the onset of the sharkskin and melt fractures. Therefore, the current study conceivably provides a robust methodology to portray every possible type of melt fracture if combined with an appropriate mechanism that also results in flow instability.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3