Performance of elite genotypes of barley, chickpea, lentil, and wheat under conservation agriculture in Mediterranean rainfed conditions

Author:

Devkota MinaORCID,Patil S. B.,Kumar Shiv,Kehel Zakaria,Wery Jacques

Abstract

AbstractConservation agriculture (CA) practices are becoming more important in Mediterranean rainfed areas due to their potential to minimize climatic risk, reduce soil erosion, and improve soil quality and water availability. Due to minimum soil disturbance and crop residue retention, the soil environment for crop growth and development can differ between CA and conventional tillage (CT) practice. However, breeding targets for improving yield performance in CA system remain poorly explored. The objective of this study was to assess the performance of elite genotypes of barley, chickpea, lentil, and wheat grown under CA, a promising alternative agricultural practice in the Mediterranean rainfed conditions. A three-year field study, with contrasting rainfall pattern, was conducted in the International Center for Agriculture Research in the Dry Areas’s research field in Morocco to evaluate the tillage × genotype interaction and its consequence for yield performance of barley, chickpea, lentil, and wheat. Thirteen elite genotypes for each crop were planted under both CA and CT systems. Wheat and chickpea produced significantly higher grain yield (+62% for wheat and +43% for chickpea) under CA than in CT, while lentil and barley performed equally under both systems. Significant effect of tillage × genotype was more frequent for chickpea and wheat than for barley and lentil. Increased yield under CA, mainly in dry year, was associated with higher harvest index (HI). For each crop species yield was mainly influenced by rainfall amount and distribution (75–88% yield variation), and tillage × genotype was of little importance. The overall results suggest that a specific breeding program for CA in lentil, chickpea, wheat, and barley may not be efficient. Few tillage × genotype interaction, especially in dry years, indicated that breeding target on increasing HI, tolerance to drought (high yield in dry years), and potential yield (high yield in wet year) can help to improve yield performance of chickpea, lentil, and wheat genotypes in CA system. Varieties with wider adaptability considering drought tolerance, higher yield with stability, and adoption of CA practices are important in the context of the Mediterranean rainfed environment. Integrating trade-off analysis between yield potential and stability in a rainfall gradient in both CT and CA in the national certification scheme of varieties may be more efficient than developing breeding programs for each type of tillage system.

Publisher

Cambridge University Press (CUP)

Subject

Agronomy and Crop Science

Reference36 articles.

1. Tillage and nitrogen fertilization effects on yield and nitrogen use efficiency of irrigated cotton

2. Genotype by tillage interaction and performance progress for bread and durum wheat genotypes on irrigated raised beds

3. Genotypic response of spring barley to alternative tillage systems;Ullrich;Cereal Research Communication,1986

4. Kumar, S. , Singh, R.G. , Piggen, C. , Haddad, A. , Ahmad, S. and Kumar, R. (2011). No till lentil: A profitable option in dry areas. Res. Bull. GRAIN Legum. No. 56 – April.

5. Changes in Soil Properties and Productivity under Different Tillage Practices and Wheat Genotypes: A Short-Term Study in Iran

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3