Fall or spring aminopyralid applications control Taeniatherum caput-medusae

Author:

Jones Lisa C.ORCID,Beckley CodyORCID,Ransom Corey V.,Prather Timothy S.ORCID

Abstract

AbstractMedusahead [Taeniatherum caput-medusae (L.) Nevski] is an invasive winter annual grass of western North American grasslands and rangelands that negatively impacts forage production, wildlife habitat, and ecosystem processes. Growth regulator herbicides, such as aminopyralid, applied in spring reduced invasive annual grass seed viability in greenhouse and California annual grassland experiments. Beginning in fall 2017, we tested combinations of sequential fall (preemergence) and spring (postemergence) aminopyralid applications at low (103 g ae ha−1) and high (206 g ae ha−1) rates at two ecologically distinct sites in the Intermountain West. Preemergence and postemergence aminopyralid applications at low and high rates controlled T. caput-medusae by 76% to 100% the second summer after study initiation. At the Utah site (which is warmer, drier, and more degraded than the Idaho site), the high rate resulted in better control. The first summer, postemergence aminopyralid applications at low and high rates reduced seed viability 47% to 91% compared with nontreated seeds, with the greatest reductions seen in Utah, which was experiencing drought. Across study sites, reduced T. caput-medusae germination in one year was linked to improved control the following year. The Idaho site also had desirable perennial grasses, which we used to investigate non-target effects. In general, there was a correlation between high T. caput-medusae control and higher perennial grass cover, indicating that successful control can make desirable perennial grasses more vigorous in this system. The option of a spring aminopyralid application increases the management window for controlling invasive annual grasses by decreasing seed viability, thereby depleting short-lived seedbanks.

Publisher

Cambridge University Press (CUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3