Author:
Cheung Wai-Shun,Li Chi-Kwong,Poon Yiu-Tung
Abstract
AbstractAs an attempt to understand linear isometries between C*-algebras without the surjectivity assumption, we study linear isometries between matrix algebras. Denote by Mm the algebra of m × m complex matrices. If k ≥ n and φ: Mn → Mk has the form X ↦ U[X ⊕ f(X)] V or X ↦ U[X1 ⊕ f(X)]V for some unitary U, V ∈ Mk and contractive linear map f: Mn → Mk, then ║φ(X)║ = ║X║ for all X ∈ Mn. We prove that the converse is true if k ≤ 2n - 1, and the converse may fail if k ≥ 2n. Related results and questions involving positive linear maps and the numerical range are discussed.
Publisher
Cambridge University Press (CUP)
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献