Author:
Li Chi-Kwong, ,Tsai Mimg-Cheng,Wang Ya-Shu,Wong Ngai-Ching, , ,
Abstract
Let Mm,n be the space of m×n real or complex rectangular matrices. Two matrices A,B∈Mm,n are disjoint if A∗B=0n and AB∗=0m. We show that a linear map Φ:Mm,n→Mr,s preserving disjointness exactly when Φ(A)=U⎛⎜⎝A⊗Q1000At⊗Q2000⎞⎟⎠V,∀A∈Mm,n, for some unitary matrices U∈Mr,r and V∈Ms,s, and positive diagonal matrices Q1,Q2, where Q1 or Q2 may be vacuous. The result is used to characterize nonsurjective linear maps between rectangular matrix spaces preserving (zero) JB∗-triple products, the Schatten p-norms or the Ky--Fan k-norms.
Subject
Algebra and Number Theory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献