Abstract
AbstractThe first paper (written jointly with L. G. Kovács) of this three-part series reduced the problem of determining all varieties of the title to the study of the varieties of nilpotent groups of class (at most) four whose free groups have no nontrivial elements of odd order. The present paper deals with these under the additional assumption that the variety contains all nilpotent groups of class three. We label each such variety by a vector of eleven parameters, each parameter a nonnegative integer or ∞, subject to numerous but simple conditions. Each vector satisfying these conditions is in fact used, and matches directly a (finite) defining set of laws for the variety it labels. Moreover, one can readily recognize from the parameters whether one variety is contained in another. The third paper will complete the determination of all varieties of nilpotent groups of class four.
Publisher
Cambridge University Press (CUP)
Subject
General Mathematics,Statistics and Probability
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献