Abstract
AbstractIn this paper we complete the investigation of those varieties of nilpotent groups of class (at most) four whose free groups have no nontrivial elements of odd order. Each such variety is labelled by a vector of sixteen parameters, each parameter a nonnegative integer or ∞, subject to numerous but simple conditions. Each vector satisfying these conditions is in fact used and directly yields a defining set of laws for the variety it labels. Moreover, one can easily recognise from the parameters whether one variety is contained in another. In view of the reduction carried out in the first paper of this series (written jointly with L. G. Kovács) this completes the determination of all varieties of nilpotent groups of class four.
Publisher
Cambridge University Press (CUP)
Subject
General Mathematics,Statistics and Probability