Snow and avalanche climates in the French Alps using avalanche problem frequencies

Author:

Reuter BenjaminORCID,Hagenmuller PascalORCID,Eckert NicolasORCID

Abstract

AbstractAvalanches result from an interaction of weather and terrain, where past weather and internal snow cover processes play important roles. So far, climatology was mainly based on weather data, as regional snow instability information, such as avalanche activity, is scarce on climatological time scales. We present a new approach to create a snow avalanche climatology from simulations of avalanche problem types based on snow cover simulations of reanalysis data and a cluster analysis. Analyzing the winters between 1958 and 2020 in the French Alps, wet-snow situations dominated natural release. Dry-snow situations with non-persistent and persistent weak layers occurred each on at least one third of the days. Four typical patterns of avalanche problem types were identified. They follow the main orography with more new snow situations in the northern regions and more cases of persistent weak layers in inner-Alpine regions. In the front-ranges and in southern regions wet-snow situations occurred early in winter – typical for coastal snow climates. Agreement with the standard snow climate classification and the geography of the French Alps suggests that mountain regions with similar conditions can now be outlined. This method for snow avalanche climatology will inform avalanche forecasting and facilitate climate change impact studies.

Funder

Université Grenoble Alpes

Publisher

Cambridge University Press (CUP)

Subject

Earth-Surface Processes

Reference45 articles.

1. On the relation between avalanche occurrence and avalanche danger level

2. Upslope migration of snow avalanches in a warming climate

3. Expanding the snow-climate classification with avalanche-relevant information: initial description of avalanche winter regimes for southwestern Canada

4. Lachapelle, ER (1970) Principles of avalanche forecasting, in Ice Engineering and Avalanche Forecasting and Control. Technical Memorandum, 98, pp. 106–113, National Research Council of Canada, Ottawa, Ontario.

5. Adding expert contributions to the spatiotemporal modelling of avalanche activity under different climatic influences;Lavigne;Journal of the Royal Statistical Society: Series C (Applied Statistics),2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3