Abstract
AbstractAvalanches result from an interaction of weather and terrain, where past weather and internal snow cover processes play important roles. So far, climatology was mainly based on weather data, as regional snow instability information, such as avalanche activity, is scarce on climatological time scales. We present a new approach to create a snow avalanche climatology from simulations of avalanche problem types based on snow cover simulations of reanalysis data and a cluster analysis. Analyzing the winters between 1958 and 2020 in the French Alps, wet-snow situations dominated natural release. Dry-snow situations with non-persistent and persistent weak layers occurred each on at least one third of the days. Four typical patterns of avalanche problem types were identified. They follow the main orography with more new snow situations in the northern regions and more cases of persistent weak layers in inner-Alpine regions. In the front-ranges and in southern regions wet-snow situations occurred early in winter – typical for coastal snow climates. Agreement with the standard snow climate classification and the geography of the French Alps suggests that mountain regions with similar conditions can now be outlined. This method for snow avalanche climatology will inform avalanche forecasting and facilitate climate change impact studies.
Funder
Université Grenoble Alpes
Publisher
Cambridge University Press (CUP)
Reference45 articles.
1. On the relation between avalanche occurrence and avalanche danger level
2. Upslope migration of snow avalanches in a warming climate
3. Expanding the snow-climate classification with avalanche-relevant information: initial description of avalanche winter regimes for southwestern Canada
4. Lachapelle, ER (1970) Principles of avalanche forecasting, in Ice Engineering and Avalanche Forecasting and Control. Technical Memorandum, 98, pp. 106–113, National Research Council of Canada, Ottawa, Ontario.
5. Adding expert contributions to the spatiotemporal modelling of avalanche activity under different climatic influences;Lavigne;Journal of the Royal Statistical Society: Series C (Applied Statistics),2015
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献