Upslope migration of snow avalanches in a warming climate

Author:

Giacona Florie,Eckert NicolasORCID,Corona Christophe,Mainieri RobinORCID,Morin SamuelORCID,Stoffel Markus,Martin Brice,Naaim MohamedORCID

Abstract

Snow is highly sensitive to atmospheric warming. However, because of the lack of sufficiently long snow avalanche time series and statistical techniques capable of accounting for the numerous biases inherent to sparse and incomplete avalanche records, the evolution of process activity in a warming climate remains little known. Filling this gap requires innovative approaches that put avalanche activity into a long-term context. Here, we combine extensive historical records and Bayesian techniques to construct a 240-y chronicle of snow avalanching in the Vosges Mountains (France). We show evidence that the transition from the late Little Ice Age to the early twentieth century (i.e., 1850 to 1920 CE) was not only characterized by local winter warming in the order of +1.35 °C but that this warming also resulted in a more than sevenfold reduction in yearly avalanche numbers, a severe shrinkage of avalanche size, and shorter avalanche seasons as well as in a reduction of the extent of avalanche-prone terrain. Using a substantial corpus of snow and climate proxy sources, we explain this abrupt shift with increasingly scarcer snow conditions with the low-to-medium elevations of the Vosges Mountains (600 to 1,200 m above sea level [a.s.l.]). As a result, avalanches migrated upslope, with only a relict activity persisting at the highest elevations (release areas >1,200 m a.s.l.). This abrupt, unambiguous response of snow avalanche activity to warming provides valuable information to anticipate likely changes in avalanche behavior in higher mountain environments under ongoing and future warming.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Reference50 articles.

1. IPCC, IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, H.-O. Pörtner ., Eds. (IPCC, 2019).

2. R. Hock ., “High mountain areas” in IPCC Special Report on Ocean and Cryosphere in a Changing Climate, H.-O. Pörtner ., Eds. (IPCC, 2019).

3. Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016

4. The European mountain cryosphere: A review on past, current and future issues;Beniston;Cryosphere,2018

5. Observed snow depth trends in the European Alps 1971 to 2019;Matiu;Cryosphere,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3