Evaluation of the AHDriFT Camera Trap System to Survey for Small Mammals and Herpetofauna

Author:

Amber Evan D.1,Lipps Gregory J.2,Peterman William E.1

Affiliation:

1. E.D. Amber, W.E. Peterman School of Environment and Natural Resources, The Ohio State University, Columbus, Ohio 43210Present address of E.D. Amber: 2021 Coffey Road, Columbus, Ohio 43210

2. G.J. Lipps, Jr. Ohio Biodiversity Conservation Partnership, Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, Ohio 43210

Abstract

Abstract Traditional surveys for small mammals and herpetofauna require intensive field effort because these taxa are often difficult to detect. Dynamic environmental conditions and dense vegetative cover, both of which are attributes of biodiverse wet meadow ecosystems, further hamper field surveys. Camera traps may be a solution, but commonly used passive infrared game cameras face difficulties photographing herpetofauna and small mammals. The adapted-Hunt drift fence technique (AHDriFT) is a camera trap and drift fence system designed to overcome traditional limitations, but has not been extensively evaluated. We deployed 15 Y-shaped AHDriFT arrays (three cameras per array) in northern Ohio wet meadows from March 10 to October 5, 2019. Equipment for each array cost approximately US$1,570. Construction and deployment of each array took approximately 3 h, with field servicing requiring 15 min per array. Arrays proved durable under wind, ice, snow, flooding, and heat. Processing 2 wk of images of 45 cameras averaged about 13 person-hours. We obtained 9,018 unique-capture events of 41 vertebrate species comprised of 5 amphibians, 13 reptiles (11 snakes), 16 mammals, and 7 birds. We imaged differing animal size classes ranging from invertebrates to weasels. We assessed detection efficacy by using expected biodiversity baselines. We determined snake communities from 3 y of traditional surveys and possible small mammal and amphibian biodiversity from prior observations and species ranges and habitat requirements. We cumulatively detected all amphibians and 92% of snakes and small mammals that we expected to be present. We also imaged four mammal and two snake species where they were not previously observed. However, capture consistency was variable by taxa and species, and low-mobility species or species in low densities may not be detected. In its current design, AHDriFT proved to be effective for terrestrial vertebrate biodiversity surveying.

Publisher

U.S. Fish and Wildlife Service

Subject

Nature and Landscape Conservation,Animal Science and Zoology,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3