Assessing efficacy of cellular transmission technology in camera trapping for wildlife research

Author:

Laughlin Lydia A.1,Freeman Hailey M.1,Blevins Carson A.1,Depuy Victoria E.1,Gatewood Alex1,MacKenzie Blaine1,Ranallo Nathan1,McQuaig John1,Davis Craig A.1,Goodman Laura E.1,Fuhlendorf Samuel D.1,Andersson Kent1,Duchardt Courtney J.1ORCID,Chitwood M. Colter1ORCID

Affiliation:

1. Department of Natural Resource Ecology and Management Oklahoma State University 008C Agricultural Hall Stillwater OK 74078 USA

Abstract

AbstractCamera traps are an important noninvasive tool used by scientists to monitor wildlife efficiently and at reduced costs. New camera trap features improve performance and encourage increased use by researchers and the public. Cellular transmission of image data, which provides users the ability to digitally receive images instead of retrieving or downloading images in the field is a useful new feature. Cellular data transmission has 2 key benefits for wildlife research in that it reduces travel time required for downloading image data and the uncertainty involving storage capacity of SD cards and battery life, and cellular transmission allows for near real‐time analysis of images, which could redistribute the time usually devoted to processing a large data set when the memory card is retrieved. Despite potential benefits, cellular transmission technology in camera traps is still new and questions remain about its reliability. Our objective was to determine the efficacy of cellular transmission technology in wildlife research by designing a camera trap study as part of a senior‐level class (Wildlife Management Applications and Planning; NREM 4522) project at Oklahoma State University. We used ArcGIS to generate a stratified random sample of trap locations, deploying five cellular transmission camera traps in open grassland and five in closed canopy forest areas from 5 September to 5 October 2021. We monitored the number of transmitted images each day online, and after camera trap retrieval, we compared the number of transmitted images to those stored on the memory card to determine transmission efficiency. Our data indicated the majority of the images taken each day were transmitted successfully; however, transmission efficiency (i.e., number transmitted divided by total number taken by the camera trap) tended to be lower in forested areas (47%) compared to open grassland (86%). Though cellular transmission technology shows promise, the combination of cellular signal, landscape features, and transmitted data quality may limit the effectiveness of cellular transmission technology for near real‐time data analysis. Based on our results, we recommend that researchers consider advantages and disadvantages of cellular transmission when designing studies and note that researchers may need to adopt an adaptive approach or conduct pilot testing that includes quantifying the transmission functionality.

Funder

Oklahoma Department of Wildlife Conservation

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3