Effects of Orientation and Weatherproofing on the Detection of Bat Echolocation Calls

Author:

Britzke Eric R.1,Slack Brooke A.2,Armstrong Mike P.3,Loeb Susan C.4

Affiliation:

1. E.R. Britzke U.S. Army Engineer Research and Development Center, Vicksburg, Mississippi 39180

2. B.A. Slack Kentucky Department of Fish and Wildlife Resources, Frankfort, Kentucky 40601

3. M.P. Armstrong U.S. Fish and Wildlife Service, Kentucky Ecological Services Field Office, Frankfort, Kentucky 40601

4. S.C. Loeb U.S. Forest Service, Southern Research Station, Clemson, South Carolina 29634

Abstract

Abstract Ultrasonic detectors are powerful tools for the study of bat ecology. Many options are available for deploying acoustic detectors including various weatherproofing designs and microphone orientations, but the impacts of these options on the quantity and quality of the bat calls that are recorded are unknown. We compared the impacts of three microphone orientations (horizontal, 45°, and vertical) and two weatherproofing designs (polyvinyl chloride tubes and the BatHat) on the number of calls detected, call quality, and species detected by the Anabat II bat detector system at 17 sites in central Kentucky in May and June 2008. Detectors with BatHat weatherproofing recorded significantly fewer call sequences, pulses per file, species per site, and lower quality calls. Detectors in the horizontal position also tended to record fewer files, fewer species, and lower quality calls. These results illustrate potential impacts of deployment method on quality and quantity of data obtained. Because weatherproofing and orientation impacted the quality and quantity of data recorded, comparison of results using different methodologies should be made with caution.

Publisher

U.S. Fish and Wildlife Service

Subject

Nature and Landscape Conservation,Animal Science and Zoology,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3