A Comparison of Bat Calls Recorded by Two Acoustic Monitors

Author:

Kunberger Jane M.1,Long Ashley M.1

Affiliation:

1. Agricultural Center and School of Renewable Natural Resources, Louisiana State University, 227 Renewable Natural Resources Building, Baton Rouge, Louisiana 70803

Abstract

Abstract Recent advances in low-cost autonomous recording unit (ARU) technology have made large-scale bat monitoring projects more practical, but several key features of ARUs (e.g., microphone quality and triggering thresholds) can influence their ability to detect and record bats. As such, it is important to quantify and report variation in ARU performance as new recording systems become available. We used the automated classification software SonoBat to compare the numbers of call files, echolocation pulses, and species recorded by a commonly used, full-spectrum bat detector—the Song Meter SM4BAT-FS—and a less expensive, open-source ARU that can detect ultrasound—the AudioMoth. We deployed paired ARUs across several forest types in Louisiana during breeding (June–August) and nonbreeding (December–February) periods in 2020 and 2021. Weatherproof cases were unavailable for AudioMoths at the time of our study. Thus, we used disposable plastic bags and plastic boxes recommended by the manufacturer and other AudioMoth users to house our monitors. We lost several AudioMoths to water damage using both methods and subsequently placed these monitors in waterproof smartphone bags for the remainder of our study. We compared data collected by AudioMoths in the three enclosures and found no differences in the number of call files identified to species or species richness. We found that SM4BATs recorded more call files identifiable to species, more call files with high-frequency bat calls, more echolocation pulses, and higher species richness than AudioMoths. Our results likely reflect differences in microphone sensitivities, recording specifications, and enclosures between the ARUs. We recommend caution when comparing data collected by different ARUs, especially over time as firmware updates and new enclosures become available, and additional research is needed to examine variation in monitor performance across a wide range of environmental conditions.

Publisher

U.S. Fish and Wildlife Service

Subject

Nature and Landscape Conservation,Animal Science and Zoology,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3