Red Fox Ancestry and Connectivity Assessments Reveal Minimal Fur Farm Introgression in Greater Yellowstone Ecosystem

Author:

Cross Patrick R.1,Sacks Benjamin N.2,Luikart Gordon3,Schwartz Michael K.4,Van Etten Keith W.1,Crabtree Robert L.15

Affiliation:

1. P.R. Cross, K.W. Van Etten, R.L. Crabtree Yellowstone Ecological Research Center, 2048 Analysis Drive Suite B, Bozeman, Montana 59718

2. B.N. Sacks Mammalian Ecology and Conservation Unit, Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California Davis, 1 Shields Avenue, Davis, California 95616

3. G. Luikart Flathead Lake Biological Station, Montana Conservation Genomic Laboratory, Division of Biological Sciences, University of Montana, 32125 Bio Station Lane, Polson, Montana 59860

4. M.K. Schwartz National Genomics Center for Wildlife and Fish Conservation, U.S. Department of Agriculture, Forest Service, 32 Campus Drive, Missoula, Montana 59812

5. P.R. Cross, R.L. Crabtree Systems Ecology Program, College of Forestry and Conservation, University of Montana, 32 Campus Drive, Missoula, Montana 59812

Abstract

Abstract Rocky Mountain red foxes Vulpes vulpes macroura potentially encounter other red fox Vulpes vulpes lineages at lower elevations, which may include nonindigenous red foxes derived from fur farms. Introgression from nonindigenous red foxes could have negative evolutionary consequences for the rare Rocky Mountain red fox subspecies. Red foxes at high elevations in the Greater Yellowstone Ecosystem exhibit lighter coat colors than those at lower elevations, potentially indicating that they represent the indigenous subspecies and that gene flow across the elevational gradient is restricted. We collected tissue samples across a 1,750-m elevation range and examined mitochondrial DNA sequences and nuclear DNA microsatellite genotypes to assess the ancestry and genetic population structure of red foxes in the northern Greater Yellowstone Ecosystem. We also used reference samples from fur farm red foxes and indigenous red foxes of the western United States to assess the extent of nonindigenous introgression across the ecosystem. We found little overlap in the elevational distribution of maternally inherited mitochondrial DNA haplotypes: above 1,600 m, we only found indigenous Rocky Mountain haplotypes (n = 4), whereas below 1,600 m, we found haplotypes not indigenous to the Rocky Mountains (n = 5) that were associated with fur farms or indigenous to the Great Plains. In contrast, biparentally inherited microsatellite variation showed little population structure across the elevational gradient. Despite this evidence of nuclear gene flow across the elevational gradient, we found little fur farm introgression in the microsatellite genotypes. It is possible that long-standing nuclear (but apparently not mitochondrial) gene flow between Rocky Mountain red foxes and indigenous red foxes on the Great Plains explained the low nuclear differentiation of these populations. Importantly, our results suggested that high elevations of the northern Greater Yellowstone Ecosystem remained free of significant fur farm introgression. Mitonuclear discordance could reflect sex-biased dispersal, which we hypothesize could be the effect of elevational differences in reproductive phenology.

Publisher

U.S. Fish and Wildlife Service

Subject

Nature and Landscape Conservation,Animal Science and Zoology,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3