Application of Social Network Inferred Data to Churn Modeling in Telecoms

Author:

Gruszczyński Witold

Abstract

The subject of this work is the use of social network analysis to increase the effectiveness of methods used to predict churn of telephony network subscribers. The social network is created on the basis of operational data (CDR records). The result of the analysis is customer segmentation and additional predictor variables. Proposed hybrid predictor employs set of regression models tuned to specific customer segments. The verification was performed on data obtained from one of the Polish operators.

Publisher

National Institute of Telecommunications

Reference22 articles.

1. H. Kim and C. Yoon, “Determinants of subscriber churn and customer loyalty in the Korean mobile telephony market”, Telecommun. Policy, vol. 28, no. 9–10, pp. 751–765, 2004.

2. C. Borna, “Combating customer churn”, Telecommun. – Americas Edit., vol. 34, no. 3, pp. 83–85, 2000.

3. G. M. Weiss, “Data mining in telecommunications”, in Data Mining and Knowledge Discovery Handbook. Kluwer Academic, 2005.

4. W. Gruszczyński and P. Arabas, “Application of social network to improve effectiveness of classifiers in churn modelling”, in Proc. Int. Conf. Computat. Aspects of Soc. Netw. CASoN 2011, Salamanca, Spain, 2011, pp. 217–222.

5. T. Mutanen, “Customer churn analysis – a case study”, VTT Research Report no. VTT-R-01184-06, 2006 [Online]. Available: http://www.vtt.fi/inf/julkaisut/ muut/2006/customer churn case study.pdf

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3