Improved Signal Detection Techniques for QOSTBC System in Fast Fading Channel

Author:

Patra Jyoti P.,Singh Poonam

Abstract

Most existing quasi-orthogonal space time Block coding (QO-STBC) schemes have been developed relying on the assumption that the channel is at or remains static during the length of the code word symbol periods to achieve an optimal antenna diversity gain. However, in time-selective fading channels, this assumption does not hold and causes intertransmit-antenna-interferences (ITAI). Therefore, the simple pairwise maximum likelihood decoding scheme is not sufficient to recover original transmitted signals at the receiver side. To avoid the interferences, we have analyzed several signal detection schemes, namely zero forcing (ZF), two-step zero forcing (TS-ZF), minimum mean square error (MMSE), zero forcing - interference cancelation - decision feedback equalizer (ZF-IC-DFE) and minimum mean square error - interference cancelation { decision feedback equalizer (MMSE-IC-DFE). We have proposed two efficient iterative signal detection schemes, namely zero forcing - iterative interference cancelation - zero forcing { decision feedback equalization (ZF-IIC-ZF-DFE) and minimum mean square error - parallel interference cancelation - zero forcing – decision feedback equalization (MMSE-IIC-ZF-DFE). The simulation results show that these two proposed detection schemes significantly outperform all conventional methods for QOSTBC system over time selective channel.

Publisher

National Institute of Telecommunications

Subject

Electrical and Electronic Engineering,Computer Networks and Communications

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3