Faster Point Scalar Multiplication on Short Weierstrass Elliptic Curves over Fp using Twisted Hessian Curves over Fp2

Author:

Wroński Michał

Abstract

This article shows how to use fast Fp2 arithmetic and twisted Hessian curves to obtain faster point scalar multiplication on elliptic curve ESW in short Weierstrass form over Fp. It is assumed that p and #ESW(Fp) are different large primes, #E(Fq) denotes number of points on curve E over field Fq and #Et SW (Fp) Fp), where Et is twist of E, is divisible by 3. For example this method is suitable for two NIST curves over Fp: NIST P-224 and NIST P-256. The presented solution may be much faster than classic approach. Presented solution should also be resistant for side channel attacks and information about Y coordinate should not be lost (using for example Brier-Joye ladder such information may be lost). If coefficient A in equation of curve ESW : y2 =x3+Ax+B in short Weierstrass curve is not of special form, presented solution is up to 30% faster than classic approach. If A=−3, proposed method may be up to 24% faster.

Publisher

National Institute of Telecommunications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3