Author:
Lee Seung-Wan,Lee Sang-In,Hwang Byoungchul
Abstract
In this study the correlation between bainitic microstructure and the low-temperature toughness of high-strength API pipeline steels was discussed in terms of crack initiation and propagation in the microstructure. Three types of API pipeline steels with different bainitic microstructures were fabricated using varying alloying elements and thermo-mechanical processing conditions, and then their microstructure was characterized by optical and scanning electron microscopy, and electron backscatter diffraction (EBSD). In particular, the effective grain size and microstructure fraction of the steels were quantitatively measured by EBSD analysis. Although all the steels were composed of polygonal ferrite (PF), and complex bainitic microstructures such as acicular ferrite (AF), granular bainite (GB), and bainitic ferrite (BF), they had different effective grain sizes and microstructure fraction, depending on the alloying elements and thermomechanical processing conditions. Charpy impact test results showed that when the martensite-austenite constituent fraction was lowest, it resulted in higher upper-shelf energy, and absorbed energy at room temperature due to the decrease in crack initiation. In contrast, excellent low-temperature toughness, such as lower ductile-brittle transition temperature and higher absorbed energy at low temperatures, could be achieved with a bainitic microstructure with fine effective grain size and high fraction of high-angle grain boundaries, which act as obstacles to prevent cleavage crack propagation.
Publisher
The Korean Institute of Metals and Materials
Subject
Metals and Alloys,Surfaces, Coatings and Films,Modeling and Simulation,Electronic, Optical and Magnetic Materials
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献