Effect of Cooling Rate on The Microstructure And Cryogenic Impact Toughness of HAZ in 9% Ni Steel

Author:

Eom Hae Won,Won Joo Yeon,Shin Sang Yong

Abstract

The effects of cooling rate on the microstructure and cryogenic impact toughness of coarse-grained heat-affected zone (CGHAZ) and inter-critically reheated coarse-grained HAZ (IC CGHAZ) in 9% Ni steel were investigated. CGHAZ and IC CGHAZ specimens were prepared from 9% Ni steel by controlling the cooling rate of the simulated welding process. The microstructure of the CGHAZ specimens consisted of autotempered martensite and lath martensite. As the cooling rate increased, the volume fraction of the autotempered martensite and the effective grain size decreased. A large amount of fine carbides was distributed inside the auto-tempered martensite, the dislocation density was low, and high angle grain boundaries were not observed. The microstructure of the IC CGHAZ specimens consisted of tempered martensite and lath martensite. As the cooling rate increased, the volume fraction of the tempered martensite and effective grain size decreased. Finer carbides were distributed inside the tempered martensite than in the auto-tempered martensite, the dislocation density was low, and high angle grain boundaries were not observed. Cryogenic fracture revealed that ductile fracture occurred in the auto-tempered martensite and tempered martensite, and brittle fracture occurred in the lath martensite. The crack propagation path was zig-zag in the high angle grain boundaries of the lath martensite. The volume fraction of auto-tempered martensite and tempered martensite and the effective grain size in the HAZ specimens had a significant effect on cryogenic impact toughness. In the IC CGHAZ specimens, cryogenic impact toughness decreased and then became constant as the cooling rate increased, due to a decrease in the volume fraction of the tempered martensite and effective grain size.

Publisher

The Korean Institute of Metals and Materials

Subject

Metals and Alloys,Surfaces, Coatings and Films,Modeling and Simulation,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3