Effect of Cladding Conditions on Solidification Cracking Behavior during Dissimilar Cladding of Inconel Alloy FM 52 and 308L Stainless Steel to Carbon Steel: Evaluation of Solidification Brittle Temperature Range by Transverse−Varestraint Test

Author:

Kim Yookyung,Moon Byungrok,Kang Namhyun,Chun Eun-Joon

Abstract

In this study, solidification cracking behavior and susceptibility in dissimilar cladding of Inconel alloy FM 52, 308L stainless steel to carbon steel, was investigated by submerged arc welding and transverse−Varestraint testing with gas tungsten arc welding. The effect of cladding conditions on cracking behavior and susceptibility was extensively evaluated, and metallurgical factors affecting susceptibility were clarified. Depending on the cladding sequence (cladding combination A: Inconel 52→308L, cladding combination B: 308L→Inconel 52), opposite types of solidification cracking behavior were observed. Specifically, solidification cracking was observed only for cladding combination A. Using transverse−Varestraint tests, the solidification brittle temperature range (BTR) was determined to be 298 K for cladding combination A and 200 K for cladding combination B. The reason for solidification cracking in cladding combination A could be its higher solidification susceptibility (i.e., a larger BTR (298 K)) compared with cladding combination B (BTR: 200 K). To elucidate differences in solidification cracking susceptibility, a numerical simulation of non−equilibrium solidification segregation for impurity elements (P, S) was performed, based on velocity dependent solidification theories and the finite differential method. Different segregation behaviors were calculated upon the cladding combinations. The severe segregation of P and S during solidification was found to be one of the important metallurgical factors for the large BTR of cladding combination A, compared with cladding combination B.

Funder

National Research Foundation of Korea

Publisher

The Korean Institute of Metals and Materials

Subject

Metals and Alloys,Surfaces, Coatings and Films,Modelling and Simulation,Electronic, Optical and Magnetic Materials

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3