Author:
Kim Kyeong-Min,Jeong Hye-Eun,Jeong Ye-Seon,Lee Uijong,Lee Hyungsoo,Seo Seong-Moon,Chun Eun-Joon
Abstract
The metallurgical aspects of weld solidification cracking in Ni-based superalloys (with Ti+Al > 5 mass%) have not been widely investigated thus far. Herein, the solidification cracking susceptibility of the CM247LC superalloy and its welds with ERNiFeCr-2 filler wire was quantitatively evaluated using a novel modified Varestraint testing method, for the successful manufacturing of CM247LC superalloy gas turbine blades. It was found that the solidification brittle temperature range (BTR) of the CM247LC superalloy was 400 K. This measurement was obtained with a high-speed thermo-vision camera. The BTR increased to 486 K for the CM247LC/ERNiFeCr-2 welds (dilution ratio: 74%). Theoretical calculations (i.e., the Scheil equation, performed using Thermo-Calc software) were conducted to determine the temperature range in which both solid and liquid phases coexist, together with the microstructural characterization of the solidification cracking surfaces. The greater increase in BTR for the CM247LC/ERNiFeCr-2 welds than that for CM247LC was attributed to the enlargement of the solid–liquid coexistence temperature range. This correlated with the formation of a low-temperature Laves phase during the terminal stage of solidification, and was affected by the diluted Nb and Fe components in the ERNiFeCr-2 filler metal. Based on the experimental and theoretical results, the proposed modified Varestraint testing method for dissimilar welds is expected to be an effective testing process for solidification cracking behavior in the manufacturing of high-soundness CM247LC superalloy welds.
Funder
Ministry of Trade, Industry and Energy
Korea Evaluation Institute of Industrial Technology
Korea Energy Technology Evaluation and Planning
National Research Foundation of Korea
Publisher
The Korean Institute of Metals and Materials
Subject
Metals and Alloys,Surfaces, Coatings and Films,Modeling and Simulation,Electronic, Optical and Magnetic Materials
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献