Research on Thermal Properties and High Temperature Exposure Behavior of Non-Skid Coating Fabricated by Twin Wire Arc Spraying

Author:

Kwon Hansol,Park Youngjin,Nam Uk Hee,Byon Eungsun

Abstract

Conventional non-skid coatings for marine construction contain polymeric materials. These materials are generally susceptible to high temperature environments because of their low thermal conductivity and thermal resistance. A metal-based non-skid coating has great potential for high temperature applications, yet, there has only been limited research. In this study, twin wire arc spray (TWAS) was used to fabricate Al and Al-3%Ti coatings on a high strength low alloyed (HSLA) steel substrate. The purpose of this study is to confirm the feasibility of TWAS Al-based coating for non-skid areas on marine construction. The static coefficient friction of TWAS Al-based coatings exhibited excellent and uniform values compared with a conventional epoxy-based non-skid coating. The specific heat and thermal conductivity of TWAS Al-based coating was measured and compared with that of the substrate. The thermal property values of the TWAS Al-based coating were reported for the first time in this study. The TWAS Al-based coating had A continuous interface with the substrate and the general microstructural features of a thermal-sprayed metal coating. After exposure to 500℃ for 24 hours, the an Fe-Al intermetallic compound and oxide were formed inside of the coating and coating-substrate interface. The adhesion strength indicated that the TWAS Al-based coating sustained its strength after the isothermal exposure test. The Vickers hardness of the TWAS Al-3%Ti coating was higher than that of the Al coating. The solid solution hardening of Ti atoms in the as-deposited coating and the precipitation hardening of the TiAl3 compound in the heat-treated coating contributed to the improvement of in Vickers hardness. Thus, the TWAS Al-3%Ti coating is proven to be a promising nonskid coating for high temperature applications.

Funder

Defense Industry Technology Center

Publisher

The Korean Institute of Metals and Materials

Subject

Metals and Alloys,Surfaces, Coatings and Films,Modeling and Simulation,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3