Research on Exposure to Salt Water Environment of Fe-based Amorphous Alloy Coating Fabricated by Twin Wire Arc Spray

Author:

Kwon Hansol,Kang Yongjin,Yoo Yeonwoo,Kim Dohyeon,Park Youngjin,Nam Uk Hee,Byon Eungsun

Abstract

Fe-based amorphous alloys are promising structural materials that have a disordered lattice structure and metastable state. Due to their advanced properties, including high hardness, high elastic limit, improved wear and corrosion resistance, Fe-based amorphous alloys have a great potential for protective materials in harsh industrial fields. Twin wire arc spray (TWAS), which is a kind of thermal spray process, is a reasonable choice for depositing Fe-based amorphous coating. Industrial advantages of TWAS include simple apparatus, low cost, excellent field usability. Several previous studies of TWAS Fe-based amorphous coating have reported microstructural features, the effect of major element variation, and the effect of post-heat treatment. Unfortunately, studies about Fe-based amorphous coating exposed to soluble salt solution are limited. Thus, a Fe-based amorphous coating was fabricated using TWAS in this study, and the effect of 3.5 wt.% NaCl solution exposure on its microstructure and mechanical properties was researched. Single- and multi-layer coatings were fabricated and Al-3%Ti was selected as a bond coat material. The results showed that single- and multi-layer Fe-amorphous coatings were successfully deposited on high strength low alloyed (HSLA) steel, which is a representative structural material for offshore construction. The single-layer coating showed continuous corrosion and the multi-layer coating showed delamination induced by Al-3%Ti bond coat galvanic corrosion. The Vickers hardness of the coating was retained after the long-term salt solution immersion test, thus, the feasibility of single-layer Fe-amorphous coating was confirmed.

Funder

Defense Rapid Acquisition Technology Research Institute

Publisher

The Korean Institute of Metals and Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3