Development of Wet Chemical Analysis Technique for Tramp Elements (M = As, Pb, Sb, and Sn) in Silver-M Alloys

Author:

Park Won-Bum,Kim Yong-Woo,Kim Sun-Joong,Kang Youn-Bae

Abstract

Wet chemical analysis techniques for four elements (M = As, Pb, Sb, and Sn) in Ag – M binary alloys were investigated with emphasis on the choice of solvent acid and the characteristic wavelength used in the ICP-AES (Inductively-Coupled Plasma Atomic Emission Spectrometer) analysis. The elements are representative tramp elements in ferrous scrap. The activity of these elements needs to be increased to remove them efficiently during the molten scrap refining process. The activity of these elements in the molten scrap (molten iron alloy) is usually measured by a chemical equilibration technique with molten Ag. Therefore, performing an accurate and reliable chemical analysis of these elements in the molten iron alloy and the molten Ag alloy is important. Preliminary tests using conventional acids (hydrochloric acid, nitric acid) resulted in unreliable results. In the present study, the proper choice of acids as solvents was investigated for each element M in the Ag-M alloys. Several synthesized Ag-M alloys of known compositions were analyzed using two ICP-AES systems independently, for cross-checking. As and Pb in Ag alloys could be successfully dissolved in the nitric acid-based solution. On the other hand, Sb and Sn in Ag alloys did not dissolve in the nitric acid-based solution completely, leaving some precipitates. It was found that the addition of hydrofluoric acid could resolve this problem. In addition to this, the effect of the mass of the Ag-M alloy and wavelength selection during ICP-AES analysis on the accuracy and the reproducibility were investigated. An optimized procedure for the wet chemical analysis of these elements in Ag-M alloys is reported.

Funder

National Research Foundation of Korea

Publisher

The Korean Institute of Metals and Materials

Subject

Metals and Alloys,Surfaces, Coatings and Films,Modeling and Simulation,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3