A Study on the Microstructures and Mechanical Properties of Ni-Cr-Mo-V Low Alloy Steels

Author:

Jo Mu Geun,Ryu Seong Hyeon,Kim Kyung Il,Kim Dong Eung,Kim Jung In,Kim Kyung Taek,Kim Sang Sub,Cho Gue Serb

Abstract

Ni-Cr-Mo-V steel alloys for high-speed railway brake discs were prepared to investigate the effect of alloying element contents on the microstructure and mechanical properties. The Cr, Mo, Mn alloying elements were incorporated into the steel alloys, which contained low carbon content in the range 0.16 wt.% ~ 0.21 wt.% to provide sufficient hardenability. The steel alloys were austenitized at 940<sup>o</sup>C for 1 hour and quenched, and tempered at 610<sup>o</sup>C. Microstructural study showed a tempered martensitic microstructure with different sized austenite grains and packets. C-Mo alloy with high Mo content and the smallest prior austenite grain size showed the highest hardness and tensile strength. But, the alloy exhibited lower impact toughness than low Mo content alloys. The lowest tensile strength of the low Mo content Mn-Cr alloy, at room temperature and elevated temperature of 600<sup>o</sup>C, was 1053.4 MPa and 667.2 MPa, respectively. The grain refinement in the C-Mo alloy was considered to be due to the solute drag effect of the Mo element. The absorbed impact energy increased with tempering temperatures, but the impact energy of the three alloys had lower values than the generally guaranteed impact energy of the currently used disk. The low impact toughness of the Mo containing alloys was attributed to the higher Si content and higher tempered hardness of the alloys. A higher thermal conductivity and lower thermal expansion coefficient were obtained in the high Mo content C-Mo alloy, which had a higher Ac3 transformation temperature.

Funder

Ministry of Land, Infrastructure and Transport

Korea Agency for Infrastructure Technology Advancement

Publisher

The Korean Institute of Metals and Materials

Subject

Metals and Alloys,Surfaces, Coatings and Films,Modeling and Simulation,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3