A Study on Lithium Hydroxide Recovery Using Bipolar Membrane Electrodialysis

Author:

Cho Yeonchul,Kim Kihun,Ahn Jaewoo,Lee Jaeheon

Abstract

Bipolar electrodialysis was used in a process of desalting a lithium sulfate solution, converting it to lithium hydroxide and sulfuric acid, and concentrating and recovering them. The effects of the experimental variables such as applied voltage, the concentration of electrode solution, the concentration of raw material solution, volume ratio, and impurity were confirmed. The optimum conditions were investigated by comparing the conversion(%) of lithium hydroxide and sulfuric acid, the process time, and energy consumption. As the applied voltage was increased, the energy consumption tended to increase, but the processing time decreased significantly. As the concentration of lithium sulfate in the raw material solution increased, the conversion(%) of lithium hydroxide decreased. As the concentration of lithium sulfate increased, the energy consumption did not increase linearly, and energy consumption increased significantly. When a raw material solution of 0.5 M Li2SO4 or more is used in the bipolar electrodialysis process, an applied voltage of 25 V is preferable. As the applied voltage increased at a constant process time, the conversion(%) of LiOH and H2SO4 increased. Regarding the effect of the electrode solution concentration, when a 5.0 wt% electrode solution was used rather than a 3.0 wt% electrode solution, energy consumption decreased by more than 10%. When the volume of the raw material solution was increased, the processing time required for desalting increased. By using a low concentration raw material solution, it was confirmed that it was simultaneously possible to recover and concentrate lithium hydroxide and sulfuric acid through volume ratio control. When the raw material solution contained Na as an impurity, it was converted to NaOH with a surface LiOH, and it was not possible to separate the lithium and sodium.

Funder

Ministry of Trade, Industry and Energy

Korea Energy Technology Evaluation and Planning

Publisher

The Korean Institute of Metals and Materials

Subject

Metals and Alloys,Surfaces, Coatings and Films,Modeling and Simulation,Electronic, Optical and Magnetic Materials

Reference24 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3