Organic-Inorganic Hybrid Gate Dielectrics Using Self-Assembled Multilayers For Low-Voltage Operating Thin-Film Transistors

Author:

Kim Yong-Wan,Ha Young-Geun

Abstract

Advanced electronic materials have attracted great interest for their potential use in flexible, large-area, and printable electronic applications. However, fabricating high-performance low-voltage thin-film transistors (TFTs) for those applications with these advanced semiconductors is still challenging because of a lack of dielectric materials which satisfy both the required electrical and physical performance. In this work, we report self-assembled hybrid multilayer gate dielectrics prepared using a facile solution procedure to achieve organic semiconductor and amorphous oxide semiconductor-based thin-film transistors with ultralow operating voltage. These self-assembled hybrid multilayer gate dielectrics were constructed by iterative self-assembly of synthesized bifunctional phosphonic acid-based organic molecules and ultrathin high-k hafnium oxide layers. The novel self-assembled hybrid multilayer gate dielectrics exhibit excellent dielectric properties with exceptionally large capacitances (up to 815 nF/ cm2) and low-level leakage current densities of < 1.56 × 10-6 A/cm2, featureless morphology (RMS roughness < 0.24 nm), and thermal stability (up to 300 °C). Consequently, these hybrid gate dielectrics can be incorporated into thin-film transistors with pentacene as p-type organic semiconductors, and with indium oxide as n-type inorganic semiconductors. The resulting TFTs functioned at ultralow voltages (< ± 2 V) and achieved high transistor performances (hole mobility: 0.88 cm2 / V·s, electron mobility: 7.8 cm2 / V·s and on/off current ratio >104, and threshold voltage: ± 0.5 V).

Funder

Kyonggi University

National Research Foundation of Korea

Publisher

The Korean Institute of Metals and Materials

Subject

Metals and Alloys,Surfaces, Coatings and Films,Modeling and Simulation,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Recent Advances in Gate Dielectrics for Enhanced Leakage Current Management and Device Performance;Transactions on Electrical and Electronic Materials;2024-05-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3