Effects of Adding CO2 to Low Level H2S Containing Aqueous Environments on the Corrosion and Hydrogen Penetration Behaviors of High-Strength Steel

Author:

Ryu Seung Min,Park Jin-seong,Bang Hye Rin,Kim Sung Jin

Abstract

The effects of adding CO2 to low level H2S containing aqueous environment on the corrosion and hydrogen penetration behaviors of high-strength steel were evaluated using a range of experimental and analytical methods. The corrosion rate of the steel sample exposed to a low level of H2S dissolved in an aqueous solution was comparatively higher than the one exposed to a mixture of low concentrations of H2S with CO2 dissolved in the aqueous solution. The higher corrosion resistance of the steel in the mixture of low concentrations of H2S and CO2 was attributed primarily to the three-layer structure of corrosion scale, comprised of an outer Fe-oxide, middle FeS1-X, and inner FeCO3, which formed on the steel sample. In particular, the formation of a thin FeCO3 layer with protective and non-conductive nature may serve as an effective barrier against the penetration of aggressive ionic species in solution, as well as hydrogen atoms formed by cathodic reduction or hydrolysis reactions. Consequently, the hydrogen permeation level, which was measured in a mixture of low-level H2S and CO2, was controlled to a comparatively lower value. Nevertheless, the higher level of hydrogen permeation in a mixture of low levels of H2S and CO2 at the early corrosion stage might increase the potential risk of pre-mature failure by hydrogen-assisted cracking.

Funder

National Research Foundation of Korea

Ministry of Science and ICT

Ministry of Trade, Industry and Energy

Korea Institute for Advancement of Technology

Publisher

The Korean Institute of Metals and Materials

Subject

Metals and Alloys,Surfaces, Coatings and Films,Modeling and Simulation,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3