Synthesis and Sintering of Nanostructured ZrB2-SiC Composite

Author:

Shon In-Jin

Abstract

ZrB2 is considered a candidate material for ultra-high temperature ceramics because of its high thermal conductivity, high melting point, and low coefficient of thermal expansion. Despite these attractive properties, applications of ZrB2 are limited by its low fracture toughness below the brittle-ductile transition temperature. To improve its ductile properties, the approach universally utilized has been to add a second material to form composites and fabricate nanostructured materials. One example of this is the adding of SiC to ZrB2 to improve fracture toughness. SiC has low density, excellent resistance to oxidation in air, and a high melting point. Therefore, SiC may be a promising additive as a reinforcing material for ZrB2-based composites. A dense nanostructured ZrB2-SiC composite was rapidly synthesized and sintered by high-frequency induction heating (HFIH) within 4 min in one step, from mechanically activated powders of ZrC, 2B and Si. Simultaneous combustion synthesis and consolidation were accomplished using the combination of current and mechanical pressure. A highly dense ZrB2-SiC composite with a relative density of up to 98.4% was fabricated using the simultaneous application of 70 MPa pressure and an induced current. The mechanical properties (toughness and hardness) and the average grain size of the composite were investigated.

Funder

Jeonbuk National University

Publisher

The Korean Institute of Metals and Materials

Subject

Metals and Alloys,Surfaces, Coatings and Films,Modelling and Simulation,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3