Sintering Behavior and Mechanical Properties of Dispersed-Reinforced Fe-TaC Composites Produced by High Energy Ball Milling

Author:

Park Bum-Soon,Lee Jeong-Han,Park Jae-Cheol,Hong Sung-Kil,Park Hyun-Kuk

Abstract

In this study, a high-melting point element, tantalum carbide (TaC) was added to improve the mechanical properties and the oxidation/corrosion resistance of Fe. The Fe-TaC composites were synthesized by high energy ball milling for the mechanical alloying of the non-equilibrium phase (Fe-Ta) and the homogeneous dispersion of TaC. Fe-TaC composite samples were fabricated using 5, 10, and 20 wt.% TaC. The ductile particles (Fe) got harden and the brittle particles (TaC) were uniformly dispersed, while facilitating short-range diffusion in the ductile matrix by the high energy ball milling method. Spark plasma sintering was performed at a sintering temperature of 850 oC and pressure of 60 MPa. As the TaC contents increased, the sintering exponential (m) increased. A higher ‘m’ value indicates a lower magnitude of shrinkage, by decreasing the lattice and grain boundary (G/B) diffusion path between the pores and particles. The hardness increased from 128.9±10.4 to 444.2±20.6 kg/mm<sup>2</sup> as the grain size decreased from 5.13 to 3.99 μm. This enhancement is attributed to the Hall-Petch relationship and dispersion strengthening effect. The mechanical properties of the sintered bodies were studied to evaluate how the different TaC content affect their characteristics. In addition, oxidation resistance increased with increasing TaC contents. It was considered that the local oxidation resistance based on the formation of an oxide layer of TaO and Fe<sub>2</sub>O<sub>3</sub>.

Funder

Korea Institute of Industrial Technology

Publisher

The Korean Institute of Metals and Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3