Effect of EMS Process on the Primary Si Refinement, Tensile and Fatigue Properties of Hyper-eutectic Al-15wt.%Si Alloy

Author:

Baek Min-Seok,Kang Tae-Hoon,Kim Jong-Ho,Park Jun-Pyo,Euh Kwangjun,Lee Kee-Ahn

Abstract

This study investigated the effect of the electromagnetic stirring (EMS) process on the microstructure and mechanical properties of hyper-eutectic Al-15 wt.%Si alloy. The tensile and high-cycle fatigue properties of the EMS Al-15wt.%Si alloy were examined and compared with conventional direct chill (DC) cast alloy. The initial microstructure of the as-cast DC alloy showed a coarse primary Si of 70 µm, in contrast to the size (40 µm) of the as-cast EMS alloy. The DC extruded alloy exhibited a massive primary Si size of 40~55 µm. In contrast, the EMS extruded alloy had a spherical primary Si with 30~40 µm sizes. The average grain sizes were measured to be 8.8 µm (EMS extruded alloy) and 11.4 µm (DC extruded alloy), respectively. The EMS process was confirmed to contribute to the refinement of the grain size and the primary Si size of the hyper-eutectic Al-Si alloy. The yield strengths at room temperature were measured to be 388.0 MPa (EMS extruded alloy) and 375.0 MPa (DC extruded alloy), and the tensile strengths were 426.0 MPa (EMS extruded alloy) and 412.4MPa (DC extruded alloy), respectively. The elongations of both alloys were similar at room temperature. The fatigue limit of the EMS extruded alloy (130 MPa) was higher than that of the DC extruded alloy (120 MPa). The EMS extruded alloy exhibited superior fatigue resistance compared to the DC extruded alloy, regardless of the cyclic stress condition. This study also discussed the potential value of the EMS process as a method for improving the properties of hyper-eutectic Al-Si alloy, as well as the deformation and fracture mechanisms of the EMS Al-15wt.%Si alloy.

Funder

Ministry of Science and ICT

National Research Foundation of Korea

Publisher

The Korean Institute of Metals and Materials

Subject

Metals and Alloys,Surfaces, Coatings and Films,Modeling and Simulation,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3