Microstructural Evolutions and Strengthening Mechanism according to the Aging Temperatures of a High Si Cast Aluminum Alloy

Author:

Shin Won-Sang,Kim Yoon-Jun

Abstract

A356 cast aluminum alloy contains 7 at.% Si and 0.3 at.% Mg, producing an approximately 50% eutectic microstructure. This high Si content and various casting conditions play a significant role in strengthening A356 alloy, by controlling the eutectic morphology and precipitates of other intermetallic compounds. Understanding how Si-related precipitates and clusters are soluble in the α-matrix is necessary to provide high strength and fatigue resistance to A356 alloys. The aging heat-treatment temperature in the A356 alloy most likely promotes the formation of these precipitates and clusters. The A356 samples were differently aged at temperatures of 110 oC and 130 oC for 2 h, and were labeled 110A, and 130A, respectively. 110A was found to have improved mechanical properties, such as high strength and elongation, compared to 130A, which may be attributed to the formation of secondary phases in the α-phase matrix. Scanning and transmission electron microscopy and atom probe tomography analyses demonstrated Ti2Si precipitation and various-sized cluster formations in 110A. In contrast, 130A had fewer clusters than 110A. Therefore, different aging heat-treatment temperatures relate to a change in the behavior of atoms, affecting the mechanical properties.

Funder

Inha University

Publisher

The Korean Institute of Metals and Materials

Subject

Metals and Alloys,Surfaces, Coatings and Films,Modeling and Simulation,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3