Author:
Jeong Ye-Seon,Jeong Jingon,Kim Se-Yun,Bae Sung-Hwan,Lee Uijong,Lee Hyungsoo,Seo Seong-Moon,Chun Eun-Joon
Abstract
In this study, the liquation cracking susceptibility in the heat-affected zone of CM247LC superalloy gas turbine blades during repair welding was quantitatively evaluated using a newly developed pre-weld Varestraint test method. The repair welding geometry was replicated through Varestraint tests for the pre-weld bead. The liquation cracking susceptibility, that is, the liquation cracking temperature range (LCTR), could be evaluated through temperature visualization at the time of crack formation during the Varestraint test. The LCTR of CM247LC alloy repair welds (heat-affected zone of the second layer weld) was 280 K. Compared to the LCTR of as-cast (620 K) and aged (65 K) CM247LC, metallurgical mechanisms for controlling the LCTR of repair welds were examined based on the microstructural characterization and Scheil’s solidification calculations for the pre-weld. The LCTR of the CM247LC alloy repair weld was influenced by the MC carbide fraction and the segregated concentration of trace and impurity elements, such as B and S in pre-weld solidification path. A process design capable of reducing the fraction of MC carbides and solidification segregation of trace impurity elements is required. Based on the experimental and theoretical results, the proposed modified Varestraint testing method for dissimilar welds is expected to analyze the solidification cracking behavior effectively in manufacturing high-soundness CM247LC superalloy welds.
Funder
Ministry of Trade, Industry and Energy
Korea Evaluation Institute of Industrial Technology
Korea Energy Technology Evaluation and Planning
Ministry of Science and ICT
National Research Foundation of Korea
Publisher
The Korean Institute of Metals and Materials
Subject
Metals and Alloys,Surfaces, Coatings and Films,Modeling and Simulation,Electronic, Optical and Magnetic Materials
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献