Asymmetry in the Mechanical Properties of Block Ni-Cr-Al Superalloy Foam Fabricated by the Combination of Powder Alloying and Hot Rolling Processes

Author:

Kim Kyu-Sik,Shim Min-Chul,Park Man-Ho,Yun Jung-Yeul,Lee Kee-Ahn

Abstract

A block Ni-Cr-Al superalloy foam with dimensions of 300 mm (width direction, WD) × 500 mm (rolling direction, RD) × 60 mm (normal direction, ND) was fabricated using powder alloying, multi-sheet stacking, and hot rolling processes. The structural characteristics, microstructure, and mechanical asymmetry of the block Ni-based foam were investigated. Analysis of the structural features showed that the interfaces between the sheets had complex strut interactions, such as contacted (deformed) and intersected struts. The average pore size along the directions was measured to be 2569.6 μm (WD), 2988.1 μm (RD), and 2493.2 μm (ND). The average thickness of the strut was 340.8 μm, and the wall thickness of the strut was 27.7 μm. The elemental distributions in the struts were uniformly controlled, and the block foam consisted of γ (matrix) and γ ' (Ni<sub>3</sub>Al) phases. Tensile properties in the ND direction showed a yield strength of 0.175 MPa, tensile strength of 0.233 MPa, and elongation of 2.54%, while the tensile properties in the RD direction were 1.27 MPa (YS), 3.01 MPa (UTS), 8.92% (El.) respectively. The foam was observed to have a compressive yield strength of 0.795 MPa in the ND direction, and that of 2.18 MPa in the RD direction were obtained. The asymmetry and anisotropy of these mechanical properties could be explained by the difference in pore sizes along the direction, and the structural characteristics of the sheet interface generated by sheet stacking and rolling.

Funder

Ministry of Trade, Industry and Energy

Publisher

The Korean Institute of Metals and Materials

Subject

Metals and Alloys,Surfaces, Coatings and Films,Modelling and Simulation,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3