Low Temperature Growth of One-Dimensional Al and Al2O3 Nano/Micro-Structures Using Al and SnO2 Powder Mixture

Author:

Lee Geun-Hyoung

Abstract

One-dimensional Al and Al2O3 nano/microstructures were fabricated via thermal oxidation of Al and SnO2 powder mixtures at temperatures below the melting point of Al (660 oC). Furthermore, the synthesis process was carried out in air at atmospheric pressure, which made the process very simple and easy. Sn metal particles with spherical shape were observed on the tips of the Al and Al2O3 nano/microstructures, suggesting that the nano/microstructures were grown via a catalyst-assisted growth mechanism. The Sn acted as a catalyst for growing the Al and Al2O3 nano/microstructures. The Sn with low melting point (232 oC) was produced via the reduction of SnO2 by Al, and formed catalyst droplets at the growth temperatures. Al atoms diffused and dissolved into the Sn liquid droplets, leading to the nucleation and then the growth of the Al and Al2O3 nano/microstructures. At 400 oC, the diffusion of Al atoms into the Sn liquid droplets was associated with high stress generated at the Al2O3/Al interface. At 600 oC close to the melting point of Al, Al atoms were diffused from the thin Al liquid layer, which was formed on the surface of the Al powder, to the Sn liquid droplets. Simultaneously, the Al atoms reacted with oxygen in air and formed solid Al2O3 nuclei. A relatively strong ultraviolet emission band centered at 330 nm was observed in the sample prepared at 600 oC.

Publisher

The Korean Institute of Metals and Materials

Subject

Metals and Alloys,Surfaces, Coatings and Films,Modelling and Simulation,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3