Catalyst-Free Thermal Evaporation Synthesis of TiO2 Nanostructures in Atmospheric Air

Author:

Lee Geun-Hyoung

Abstract

TiO<sub>2</sub> nanostructures were synthesized using a thermal evaporation method without a catalyst. TiO powders mixed with graphite powders were used as the source materials. The synthesis process was performed in air atmosphere at 1000 °C. When the mass ratio of TiO/graphite in the source material was 2:1, TiO<sub>2</sub> nanowires and nanobelts started to form. As the mass ratio of graphite to TiO increased to 1:1, TiO<sub>2</sub> nanowires and nanobelts were formed in large quantity. The nanowires had an average diameter of 80 nm and lengths in the range of 3 ~ 11 µm. The average width and length of the nanobelts were 500 nm and 3.4 µm, respectively. However, with further increase in the mass ratio of TiO/graphite to 1:2, no nanostructures were observed. The mass ratio of graphite to TiO in the source material had an important effect on the formation of the TiO<sub>2</sub> nanowires and nanobelts. The X-ray diffraction data confirmed that the TiO<sub>2</sub> nanostructures had a rutile crystal structure. Two emission bands centered at 410 nm and 510 nm were observed in the room temperature cathodoluminescence spectrum of the TiO<sub>2</sub> nanostructures. The emission at 410 nm is attributed to the electron transition from the conduction band to the valence band in rutile TiO<sub>2</sub> crystal, which is indicative of the high crystallinity of the TiO<sub>2</sub> nanostructures.

Publisher

The Korean Institute of Metals and Materials

Subject

Metals and Alloys,Surfaces, Coatings and Films,Modelling and Simulation,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3