Microstructure and Sintering Behavior of Fine Tungsten Powders Synthesized by Ultrasonic Spray Pyrolysis
-
Published:2021-05-05
Issue:5
Volume:59
Page:289-294
-
ISSN:1738-8228
-
Container-title:Korean Journal of Metals and Materials
-
language:en
-
Short-container-title:Korean J. Met. Mater.
Author:
Jo Hyeonhui,Kim Jeong Hyun,Lee Young-In,Jeong Young-Keun,Oh Sung-Tag
Abstract
The powder microstructure and sintering behavior of W prepared by ultrasonic spray pyrolysis and spark plasma sintering were investigated. Fine-grained W powders were synthesized by ultrasonic spray pyrolysis using an ammonium metatungstate hydrate solution and hydrogen reduction. The XRD analysis of the powder, pyrolyzed below 600 oC, showed tungsten oxide hydrate and WO3 peaks, while the powder pyrolyzed at 700 oC was composed of only the WO3 phase. As the precursor concentration increased, the particle size of the WO3 powder increased, which was interpreted to be due to an increase in the amount of solute in the droplet. The hydrogen-reduced powder showed a spherical shape with fine pores inside. XRD and XPS analysis revealed that the WO3 powder was completely reduced to metallic W by hydrogen reduction, and some oxide layers existed on the powder surface. The consolidated specimen prepared by spark plasma sintering of hydrogen-reduced W powder exhibited a relative density of 94.1% and a Vickers hardness value of 3.89 GPa. The relative density and hardness of the specimens prepared by ultrasonic spray pyrolysis showed relatively lower values than when commercial W powder, with an average particle size of 1.22 μm, was sintered under the same conditions. These results were explained by the formation of agglomerates in the W powder prepared by the ultrasonic spray pyrolysis method.
Funder
Ministry of Science and ICT
National Research Foundation of Korea
Publisher
The Korean Institute of Metals and Materials
Subject
Metals and Alloys,Surfaces, Coatings and Films,Modeling and Simulation,Electronic, Optical and Magnetic Materials
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献