Comparative Research on Corrosion Resistant Non-Skid Al and Al-3%Ti Coating Fabricated by Twin Wire arc Spraying

Author:

Kwon Hansol,Park Youngjin,Nam Uk Hee,Lee Eunkyung,Byon Eungsun

Abstract

To ensure the lifetime of marine constructions and the safety of workers and pedestrians, corrosion protective non-skid coating is an effective solution. However, the conventional polymer-based coating has some limitations. In this study, newly-suggested Al and Al-3%Ti coatings were deposited on high strength low alloyed steel substrate using twin wire arc spraying (TWAS). The static and dynamic friction coefficients of the Al-based coatings under dry and wet conditions were measured using portable friction testers. To evaluate the corrosion behavior under sea water conditions, a cyclic potentiodynamic polarization test (CPDP) and salt solution immersion test (SSIT) were performed with a 3.5% NaCl solution. To confirm the coating degradation, mechanical properties (Vickers hardness and adhesion strength) were compared before and after SSIT. The results showed that the TWAS Al-based coatings were well fabricated on HSLA steel and had the general microstructure of a thermal spray. The coatings provided excellent corrosion protection for the steel substrate and greatly increased the friction coefficient of the surface. The Vickers hardness slightly increased and adhesion strength decreased after SSIT. The microstructure observation revealed that the TWAS coatings had a bimodal structure induced by non-uniform droplet generation at the TWAS tips. After SSIT, some oxides formed on the surface and porous regions of the coatings. This indicated that the TWAS coating successfully provided corrosion protection and non-skid properties.

Funder

Defense Industry Technology Center

Publisher

The Korean Institute of Metals and Materials

Subject

Metals and Alloys,Surfaces, Coatings and Films,Modeling and Simulation,Electronic, Optical and Magnetic Materials

Reference18 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3