Impact of Fermi Surface Shape Engineering on Calculated Electronic Transport Properties of Bi-Sb-Te
-
Published:2021-01-05
Issue:1
Volume:59
Page:54-60
-
ISSN:1738-8228
-
Container-title:Korean Journal of Metals and Materials
-
language:en
-
Short-container-title:Korean J. Met. Mater.
Author:
Kim Sang-il,Lim Jong-Chan,Yang Heesun,Kim Hyun-Sik
Abstract
Using thermoelectric refrigerators can address climate change because they do not utilize harmful greenhouse gases as refrigerants. To compete with current vapor compression cycle refrigerators, the thermoelectric performance of materials needs to be improved. However, improving thermoelectric performance is challenging because of the trade-off relationship between the Seebeck coefficient and electrical conductivity. Here, we demonstrate that decreasing conductivity effective mass by engineering the shape of the Fermi surface pocket (non-parabolicity factor) can decouple electrical conductivity from the Seebeck coefficient. The effect of engineering the non-parabolicity factor was shown by calculating the electronic transport properties of a state-of-the-art Bi-Sb-Te ingot via two-band model with varying non-parabolicity. The power factor (the product of the Seebeck coefficient squared and electrical conductivity) was calculated to be improved because of enhanced electrical conductivity, with an approximately constant Seebeck coefficient, using a non-parabolicity factor other than unity. Engineering the non-parabolicity factor to achieve lighter conductivity effective mass can improve the electronic transport properties of thermoelectric materials because it only improves electrical conductivity without decreasing the Seebeck coefficient (which is directly proportional to the band mass of a single Fermi surface pocket and not to the conductivity effective mass). Theoretically, it is demonstrated that a thermoelectric figure-of-merit <i>zT</i> higher than 1.3 can be achieved with a Bi-Sb-Te ingot if the non-parabolicity factor is engineered to be 0.2. Engineering the non-parabolicity factor is another effective band engineering approach, similar to band convergence, to achieve an effective improvement in power factor.
Funder
National Research Foundation of Korea
Ministry of Education
Publisher
The Korean Institute of Metals and Materials
Subject
Metals and Alloys,Surfaces, Coatings and Films,Modeling and Simulation,Electronic, Optical and Magnetic Materials
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献