The Mechanism behind the High Thermoelectric Performance in YbCd<sub>2-x</sub>Mg<sub>x</sub>Sb<sub>2</sub>

Author:

Kwon Seung-Hwan,Kim Sang-il,Heo Minsu,Seo Won-Seon,Roh Jong Wook,Yang Heesun,Kim Hyun-Sik

Abstract

YbCd<sub>2</sub>Sb<sub>2</sub> is a promising Zintl compound for waste heat recovery applications due to its low thermal conductivity, originating from its complex crystal structure. Many strategies such as alloying or doping have been suggested to further reduce the thermal conductivity of YbCd<sub>2</sub>Sb<sub>2</sub> to improve its thermoelectric performance. However, the effects of alloying or doping on the electronic transport properties of YbCd<sub>2</sub>Sb<sub>2</sub> have not been evaluated in detail. Here, previously reported thermoelectric properties of YbCd<sub>2-x</sub>Mg<sub>x</sub>Sb<sub>2</sub> (<i>x</i> = 0, 0.2, 0.4) with drastic thermal conductivity suppression were evaluated using the Single Parabolic Band (SPB) model and Callaway von Bayer (CvB) model. The SPB and CvB models evaluate any changes in electronic band parameters and phonon scattering strength, respectively, due to Mg alloying. Based on the SPB model, Mg alloying deteriorated the weighted mobility, mostly due to non-degenerate mobility reduction. However, the magnitude of point-defect phonon scattering significantly increased with Mg alloying, as evaluated by the CvB model. As a result, the maximum <i>zT</i> is achieved when x = 0.4 at 700 K despite the decreased electronic transport properties from Mg alloying. Our work suggests that carefully designed alloying can improve the thermoelectric performance of the Zintl compound even when it changes its electronic and thermal transport properties in opposite directions.

Funder

National Research Foundation of Korea

Ministry of Education

Publisher

The Korean Institute of Metals and Materials

Subject

Metals and Alloys,Surfaces, Coatings and Films,Modeling and Simulation,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3